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Abstract: Many difficulties learners have with rational number tasks can be attributed to the
“natural number bias”, i.e. the tendency to inappropriately use natural number properties in
rational numbers tasks (Van Hoof, 2015). McMullen and colleagues found a relevant source of
individual differences in the learning of those aspects of rational numbers that are susceptible to
the natural number bias, namely Spontaneous Focusing On quantitative Relations (SFOR)
(McMullen, 2014). While McMullen and colleagues showed that SFOR relates to rational number
knowledge as a whole, we studied its relation with several aspects of the natural number bias.
Additionally, we 1) included test items addressing operations with rational numbers and 2) con-
trolled for general mathematics achievement and age. Results showed that SFOR related strongly
to rational number knowledge, even after taking into account several control variables. Results
are discussed for each of the three aspects of the natural number bias separately.
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Introduction
Rational Number Knowledge

There is a broad agreement in the litera-
ture that a good understanding of rational
numbers is of critical importance for math-
ematics achievement in general and for per-
formance in specific domains of the math-
ematics curriculum in particular (Siegler et
al., 2012). For example, Siegler, Thompson,
and Schneider (2011) found high correlations

Note. Jo Van Hoof and Tine Degrande contrib-
uted equally to this work and are both first au-
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(all between .54 and .86) between three mea-
sures of fraction magnitude knowledge (0-1
fraction number line estimation, 0-5 fraction
number line estimation, and 0-1 fraction mag-
nitude comparison) and general mathemat-
ics achievement in upper elementary school
learners. This finding was replicated by
Torbeyns, Schneider, Xin, and Siegler (2015)
in three countries from different continents.
Similar findings emerged from a recent study
of Siegler et al. (2012), who concluded that
fifth graders’ rational number understanding
predicted their overall mathematics and al-
gebra scores in high school, even after con-
trolling for reading achievement, 1Q, work-
ing memory, whole number knowledge, fam-
ily income, and family education.
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Despite the critical importance of a good
rational number knowledge, a large body of
literature reported that children and even
adults have a lot of difficulties dealing with
various aspects of rational numbers (Bailey,
Siegler, & Geary, 2014; Cramer, Post, &
delMas, 2002; Li, Chen, & An, 2009;
Mazzocco & Devlin, 2008; Merenluoto &
Lehtinen, 2004; Vamvakoussi, Van Dooren,
& Verschaffel, 2012; Vamvakoussi &
Vosniadou, 2010; Van Hoof, Lijnen,
Verschaffel, & Van Dooren, 2013). To give
one example, more than one third of a repre-
sentative sample of Flemish sixth graders did
not reach the educational standards for ra-
tional numbers (Janssen, Verschaffel,
Tuerlinckx, Van den Noortgate, & De Fraine,
2010).

The difficulties learners have with ratio-
nal number tasks are often — at least in part
— attributed to the “natural number bias”
(Vamvakoussi et al., 2012; see Ni & Zhou,
2005, for the closely related idea of “whole
number bias”), which is the tendency to in-
appropriately use natural number properties
in rational numbers tasks (Van Hoof,
Vandewalle, Verschaffel, & Van Dooren,
2015). Before learners are introduced to ra-
tional numbers in the classroom, they have
already formed an idea of what a number is.
This idea is based on their experiences (both
in daily life and in school) with natural num-
bers. Once the learners are then instructed
about rational numbers, the properties
of natural numbers are not always appli-
cable anymore, leading to problems and mis-
conceptions with rational numbers
(Vamvakoussi & Vosniadou, 2010). This
becomes apparent in learners’ systematic
mistakes, specifically in rational number
tasks where reasoning purely in terms of
natural numbers results in an incorrect so-

lution — these tasks are called incongruent.
At the same time, much higher accuracy
levels are found in rational number tasks
where reasoning in terms of natural num-
bers leads to a correct answer — these tasks
are called congruent. The vast literature on
this natural number bias reports three main
aspects that elicit such systematic errors.
The first aspect relates to the density of
the set of rational numbers. While natural
numbers are characterized by a discrete
structure (one can always indicate which
number follows a given number; for example
after 13 comes 14), rational numbers are
characterized by a dense structure (you can-
not say which number comes next, because
between any two given rational numbers
are always infinitely many other rational
numbers) (e.g., Merenluoto & Lehtinen,
2004). The second aspect relates to the size
of rational numbers. Research indicates that
errors in size comparison tasks are repeat-
edly made because students incorrectly
assume that, as is the case with natural
numbers, “longer decimals are larger, shorter
decimals are smaller”, or “that a fraction’s
numerical value always increases when its
denominator, numerator, or both increase”
(Mamede, Nunes, & Bryant, 2005; Meert,
Grégoire, & Noél, 2010; Obersteiner, Van
Dooren, Van Hoof, & Verschaffel, 2013;
Resnick et al., 1989). The third aspect con-
cerns the effects of arithmetic operations
on rational numbers. Several properties re-
lated to operations with natural numbers no
longer consistently apply to rational num-
bers. Numerous studies report, for example,
the well-known misconception of learners
that “multiplication and addition will always
lead to a larger outcome” and “division and
subtraction will always result in a smaller
outcome” (Hasemann, 1981; Vamvakoussi
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et al., 2012; Van Hoof, Vandewalle et al.,
2015).

While recent studies have begun to shed
light on the causes of individual differences
in rational number knowledge as a whole
(Bailey et al., 2014), little is known about the
causes of individual differences with regard
to overcoming the natural number bias (Van
Hoof, 2015; Van Hoof, Verschaffel, & Van
Dooren, 2015). In this respect, McMullen and
colleagues recently found a potentially rel-
evant source of individual differences in the
learning of rational numbers, namely learn-
ers’ Spontaneous Focusing On quantitative
Relations (SFOR) (e.g., McMullen, 2014;
McMullen, Hannula-Sormunen, & Lehtinen,
2014; McMullen, Hannula-Sormunen,
Laakkonen, & Lehtinen, 2015).

Spontaneous Focusing On Quantitative
Relations (SFOR)

SFOR is described as “the spontancous
(i.e., undirected) focusing of attention on
quantitative relations and the use of these
relations in reasoning” (McMullen,
Hannula-Sormunen, & Lehtinen, 2011,
p. 218). SFOR belongs to the larger category
of the “spontaneous quantitative focusing
tendencies”, as originally investigated by
Hannula-Sormunen, Lehtinen and colleagues
(e.g., Hannula & Lehtinen, 2005; Hannula,
Lepola, & Lehtinen, 2010) and recently also
by others (Edens & Potter, 2013; Kucian et
al., 2012; Batchelor, Gilmore, & Inglis, 2015).
A central idea underlying research on these
tendencies is that there are not only indi-
vidual differences in how learners reason
about mathematics and use their numerical
skills in formal mathematics learning situa-
tions, but also how often they spontaneously
focus on mathematical aspects of informal

everyday situations that are non-explicitly
mathematical in nature. In these informal situ-
ations, the recognition and use of quantita-
tive aspects in the situation is done at one’s
own initiative, so undirected and spontane-
ous (e.g., Hannula & Lehtinen, 2005;
McMullen et al., 2011, 2014; McMullen,
Hannula-Sormunen, & Lehtinen, 2013). Stud-
ies on those spontaneous quantitative fo-
cusing tendencies thus examine how often
learners spontaneously use their number rec-
ognition and quantitative reasoning skills in
situations where they are not explicitly
guided to do so (Hannula & Lehtinen, 2005;
McMullen, 2014).

The first spontaneous quantitative focus-
ing tendency introduced by Hannula and
Lehtinen (2001;2005) in research with young
learners(3.5-6 year olds) is Spontaneous Fo-
cusing On Numerosity (SFON). SFONis de-
fined as theunguided, i.e. self-initiated recog-
nition and use of exact numerosity in non-ex-
plicitlymathematical situations (Hannula &
Lehtinen,2005), and hasbeen frequently stud-
ied. Those studies revealed that learners dif-
ferwith respectto SFON (Batcheloretal., 2015;
Edens & Potter, 2013; Hannula & Lehtinen,
2005; Hannula, Rdsédnen, & Lehtinen, 2007,
Hannulaetal.,2010), and that SFON is posi-
tively, and domain-specifically related to the
development of enumeration, subitizing, num-
ber sequence, and basic arithmetic skills
(Edens & Potter,2013; Hannula & Lehtinen,
2005; Hannulaetal.,2007,2010),as well as to
substantiallylater general mathematical skills
andrational numberunderstanding (Hannula-
Sormunen, Lehtinen, & Résdnen, 2015;
McMullen, Hannula-Sormunen, & Lehtinen,
2015).

Students with low mathematical skills have
lower SFON tendency than students with
average mathematical skills (Kucian et al.,
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2012). Importantly, it has been demonstrated
that children who do not focus on numerosity
in the SFON tasks are able to recognize and
produce quantities in the tasks once their
attention is deliberately guided towards the
exact number of items in the task. This indi-
cates that SFON is a spontaneous attentional
process, which is not entirely explained by
children’s numerical or other cognitive abili-
ties needed for the task (Hannula & Lehtinen,
2005).

The research team of Lehtinen and
Hannula-Sormunen recently expanded their
SFON-studies and investigated whether
there also exists a mathematically more ad-
vanced spontaneous quantitative focusing
tendency in older learners (5-10 years of age),
namely SFOR. In the context of these inves-
tigations, SFOR is a more mathematically
complex spontaneous quantitative focusing
tendency, in which learners’ spontaneous
focus lies on quantitative relations between
two or more (sub-)sets, rather than merely
on the numerosity of a single set. This is the
core difference between SFOR and SFON.
For example, a student may notice that she
has walked already one third of her way to
school, or has eaten three quarters of her
chocolate bar, while another student may
notice that he has walked one kilometer, or
that he has eaten only three pieces of the
chocolate bar. McMullen and colleagues re-
vealed individual differences in learners’
SFOR tendency (e.g., McMullen, 2014;
McMullen et al., 2014, 2015). Those differ-
ences could not entirely be explained by
learners’ ability to recognize quantitative re-
lations. This finding indicates that, in addi-
tion to learners’ skills to recognize quantita-
tive relations, differences in SFOR tendency
could explain task performance (McMullen
etal., 2014).

In recent years, McMullen and colleagues
investigated in several studies the relation
between learners’ SFOR and their rational
number knowledge and found repeatedly
that learners’ SFOR correlates highly with
their rational number knowledge (see for
more details McMullen, 2014; and McMullen
et al., 2015). More specifically, they sug-
gested that “the natural number bias may be
related to spontaneous quantitative focus-
ing tendencies” (McMullen, 2014, p. 46). This
would implicate that SFOR correlates highly
with performance, especially on incongru-
ent rational number tasks (see definition
above). However, McMullen and colleagues
only looked at rational number knowledge
as a whole — as measured by learners’ total
score on incongruent rational number knowl-
edge — without focusing on those specific
aforementioned aspects of the natural num-
ber bias separately.

The Present Study

We extended the above findings of
McMullen and colleagues by further explor-
ing the relationship between learners’ SFOR
and their rational number knowledge. More
specifically, while McMullen and colleagues
merely showed this relation for rational num-
ber knowledge as a whole, we tested whether
spontaneous quantitative focusing tenden-
cies may be related to all aspects of the natu-
ral number bias separately — besides rational
number knowledge as a whole. Next to this
general aim, we expanded previous SFOR-
research in two ways. First, the test instru-
ments used in the studies of McMullen and
colleagues (e.g., McMullen et al., 2014, 2015)
contained only items about the aspect of
density and size, and not about the third
aforementioned aspect of the natural num-
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ber bias, namely operations. We aimed to
study whether the relation between SFOR
and rational number knowledge would not
only hold for the density and size aspects,
but also for operations with rational num-
bers. Second, next to the control variables
that McMullen and colleagues (e.g.,
McMullen, 2014) already used, i.e. arithmeti-
cal fluency and non-verbal intelligence, we
additionally took into account general math-
ematics achievement and age. With respect
to the mathematics achievement variable, up
to now, no study determined whether the
impact of SFOR on rational number knowl-
edge was due to its relation to a more gen-
eral mathematical ability, or whether SFOR
was a unique and direct predictor of this
knowledge, in addition to general mathemati-
cal ability. In other words, it might have been
possible that the relation between SFOR and
rational number knowledge was mediated by
general mathematics achievement. Regard-
ing the age variable, both SFOR and rational
number knowledge have been found to in-
crease with age (see above). Thus, the ob-
served relation between these two variables
may be explained by schooling and/or matu-
ration. Therefore, we added learners’ age
as a predictor in the model, when predicting
rational number knowledge by means of
SFOR.

Method
Participants

Participants were 356 Flemish learners from
fourth to sixth grade (150 fourth graders, 97
fifth graders, 109 sixth graders) from five dif-
ferent primary schools. Approximately the
same number of boys and girls participated
in the study.

Tasks
SFOR measure: The Teleportation Task

We used the Teleportation Task of
McMullen and colleagues (McMullen, 2014;
McMullen et al., 2015) in order to measure
SFOR (see Figure 1a). The Teleportation Task
involved a cover story, which told that a set
of supplies containing three sets of objects
was sent from earth through space with
a teleportation machine. However, when
doing so, the objects got transformed in a
number of ways (e.g., size, shape, color, num-
ber of items). Learners were first asked to
describe the transformation in their own
words in as many ways as possible. Second,
they were shown a different numerosity of
the same objects and they were asked to
draw what they would expect to arrive based
on the previous time. All learners were pre-
sented with four trials in total: two trials in
which they were asked to describe the trans-
formation (open-ended tasks), and two trials
in which they were asked to draw the trans-
formation (drawing tasks). When describing
or drawing the transformation, learners could
pay attention to the various non-mathemati-
cal changes (e.g., in terms of the colors,
shapes of the objects), but also to the quan-
titative relation between the original and
final numerosity of the three sets. No men-
tion of the quantitative and mathematical
aspects of the task was made before or dur-
ing the task, and the task was not adminis-
tered during math classes. Further, the
Teleportation Task was the first task learn-
ers completed during this study and the
learners were not told that the study had
anything to do with mathematics. Given that
learners were not guided towards the quan-
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titative aspects of the task, it was assumed
that learners who used quantitative relations
in a response, spontaneously focused on the
relations in that trial (also see McMullen et
al., 2015).

For each of the four trials, participants’
answers were scored from zero to two
points, based on the extent to which they
used multiplicative quantitative relations.
We used the same coding scheme as
McMullen and colleagues (McMullen,
2014; McMullen et al., 2015), with very good
interscorer reliability (two independent rat-
ers agreed on their scoring on 98% of the
items). Answers on the open-ended task
were coded as relational (2 points) when
they involved explicit descriptions of exact
multiplicative relations (e.g., “three times
more”). For the drawing task, relational re-
sponses depicted the correct number of
items for all three sets of objects, based on
the multiplicative relation between sets.
Quasi-relational responses (1 point) in-
volved responses that contained non-exact
or incorrect descriptions of multiplicative
relations (e.g., “they multiplied”) on the
open-ended task, and responses that de-
picted a consistent but incorrect multiplica-
tive change, or a correct drawing of two
out of three sets. All other responses were
coded as non-relational (0 points). Finally,
the sum-score of all coded responses was
calculated, resulting in a minimum possible
score of 0 and a maximum score of 8. This
range of possible scores allowed capturing
considerable variation in SFOR.

Rational Number Knowledge Test
Learners’ understanding of rational num-

bers was measured by the Rational Number
Knowledge Test (RNKT). The RNKT is a

combination of two existing test instru-
ments. The first instrument is the Rational
Number Test (further abbreviated as RNT)
as used in the study of McMullen et al.
(2015), which included items measuring the
understanding of the size and density of
fractions and decimals. The reliability of this
test was very high (Cronbach’s alpha = .92).
The second test is the Rational Number
Sense Test (RNST) constructed by Van
Hoof, Janssen, Verschaffel, and Van Dooren
(2015). The RNST was first used in a larger
research project aimed at mapping the de-
velopment of rational number knowledge
throughout the elementary and secondary
school curriculum (Van Hoof, Verschaffel et
al., 2015). It included items of the three as-
pects of density, size, and operations (see
introduction) and every type of item was
presented in its fraction and decimal form
or a combination of both. The reliability of
the RNST was also very high (Cronbach’s
alpha = .87). By complementing a subset of
the RNT of McMullen et al. (2015) with a
specific subset of items of the RNST of Van
Hoof et al. (2015), we created an extended
Rational Number Knowledge Test (further
abbreviated as RNKT test). The total RNKT
consisted of 24 incongruent items: 8 den-
sity items, 8 size items, and 8 operation
items. Because we were interested in learn-
ers’ ability to overcome the natural number
bias, only incongruent items were included
in the RNKT. Examples of items for all three
aspects are given in Figure 1b. The reliabil-
ity of the test was very high (Cronbach’s
alpha = .89).

Raven's Progressive Matrices

Raven’s Progressive Matrices test (Raven,
Court, & Raven, 1995) was used to measure
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Density Size Operations
How many numbers are there Which is the larger number? 0.36-02=...
between 0.51 and 0.52? 5/8 or 4/3
What is the smallest possible Which is the larger number? What is half of 1/8?
fraction? 0.36 or 0.5

Figure 1b

Figure 1 Examples of items used in the Teleportation Task to measure SFOR a) and in the
RNKT to measure rational number knowledge b)

non-verbal intelligence (further abbreviated
as 1Q). Twenty items were used: two items
from Set B (B1 and B2), the whole of Set C
(C1-Cl12), and six items from Set D (D1 —
D6). All items were scored as correct or in-
correct, leading to a maximum possible score
of 20.

Arithmetical Fluency Test

Learners’ arithmetical fluency was mea-
sured by means of the Tempo Test Rekenen
(De Vos, 1992). This test measures the auto-
mated knowledge of the four basic opera-
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tions (addition, subtraction, multiplication,
and division) by means of 40 arithmetic prob-
lems on each of the four types of basic op-
erations, as well as 40 additional arithmetic
problems consisting of a mix of all the four
different operations on sequential items.
This leads to a total of 200 arithmetic prob-
lems. Learners were asked to complete as
many arithmetic operation problems per
subtest as possible in 1 minute, and as accu-
rately as possible. Afterwards, the sum score
was calculated by adding the scores on each
of five subtests (i.e., one subtest per type of
operation, and one subtest wherein all op-
erations were mixed). The maximum possible
score was 200.

General Mathematics Achievement Test

General mathematics achievement was
measured by means of the Leerling Volg
Systeem (LVS) Wiskunde (Dudal, 2003). This
test contains 60 items covering several as-
pects of the mathematics curriculum in
Flanders and is typically used by schools to
monitor the progress of learners throughout
primary school.

Table 1 Descriptive statistics

Results
Descriptive Statistics

Table 1 displays the descriptive statistics
for all variables. Learners had a mean score
of 4.35 on the SFOR task. There was sub-
stantial variation in learners’ SFOR scores,
as shown by the standard deviation (SD =
2.61) in Table 1. This was in line with previ-
ous studies of McMullen and colleagues
(e.g., McMullen, 2014; McMullen et al., 2014,
2015).

The Relation Between SFOR and Ratio-
nal Number Knowledge

As stated above, the main aim of this study
was to further explore the relationship be-
tween learners’ SFOR and their rational num-
ber knowledge. Correlation analyses con-
firmed that there was a strong relationship
between SFOR and learners’ rational num-
ber knowledge. This was the case for learn-
ers’ total rational number knowledge score
(r=.42, p <.001), as well as for learners’

Variables N M SD Range Theor'etlcal
Maximum
SFOR 355 435 2.61 0-8 8
1Q 349 1494  3.28 3-20 20
Arithmetical fluency 349 111.98 23.23  40-191 200
Rational number knowledge 353 947 498 0-23 24
Density 353 093 1.25 0-7 8
Size 353 514  2.58 0-8 8
Operations 353 340 215 0-8 8
Math achievement 345 42.67 877 5-59 60
Age in months 356 135.08 11.34 117-164 /
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scores on the separate aspects: learners’
score on the size tasks (r=.34, p <.001) and
learners’ score on the operation tasks (r =
41, p<.001). A smaller, yet significant corre-
lation was found between SFOR and learn-
ers’ score on the density tasks (r = .26, p <
.001).

Predicting Learners’ Rational Number
Knowledge

We conducted several linear regression
analyses to further investigate the relation
between learners’ SFOR and their rational
number knowledge. In the first regression
analysis, in an attempt to confirm McMullen
and colleagues’ (2015) previous findings,
learners’ arithmetical fluency was entered as
a first predictor of learners’ rational number
knowledge, followed by learners’ 1Q, and fi-
nally SFOR. In three additional regression
analyses, every aspect of rational number
knowledge (density, size, and operations)
was entered separately as dependent vari-
able to define the predictors of these three
sub-aspects separately. The results of the
four linear regression analyses are given in
Table 2. This table also contains the R?
change and standardized beta for every pre-

dictor, in order to show the amount of ex-
plained variance added by each predictor,
and the unique contribution of each predic-
tor.

Results of the first regression analysis
show that, after including arithmetical flu-
ency and IQ in the model, learners’ SFOR
still accounted for 8% additional variance in
their total rational number knowledge score
(p <.001). The total amount of variance of
learners’ rational number knowledge ex-
plained by the three predictors was 34%. Next
to arithmetical fluency, SFOR explained the
largest amount of variance. The same trends
were found for density: After including ar-
ithmetical fluency and IQ in the model, SFOR
still accounted for 3% variance in learners’
density score (p < .01). The total amount of
variance in density explained by the three
predictors was 14%. Also for size, results of
the second additional regression analysis
indicated that after including arithmetical flu-
ency and IQ in the model, SFOR still ac-
counted for 5% variance in size (p <.001).
The total amount of variance of learners’ size
score explained by the three predictors was
24%. Finally, for the operations aspect, re-
sults indicated that after including arithmeti-
cal fluency and IQ in the model, SFOR still

Table 2 Predictors of rational number knowledge

Rational
number DENSITY SIZE OPERATIONS
Variable knowledge
Standardized R? Standardized R? Standardized R? Standardized R?
i Change i Change i Change i Change
Arithmetical 4]HEs D4k 7k 10%% 37k gk 3Gk 19k
fluency ' ' ' ' ' ' ) )
1Q 04 02* 05 .01 .03 01* 03 01*
SFOR '30*** '08*** '18** '03** '24*** '05*** '31*** '09***
Total R? 4k 4k D4k gk

Note. *p < .03, ** p <.01, *** p < 001



STUDIA PSYCHOLOGICA, 58,2016, 2

165

accounted for 9% variance in learners’ op-
erations score (p <.001). The total amount of
variance of operations explained by the three
predictors was 29%.

As stated above, we further investigated
whether the relation between learners’” SFOR
and their rational number knowledge would
still hold after controlling for learners’ gen-
eral mathematics achievement and age, next
to the aforementioned control variables al-
ready used by McMullen and colleagues
(e.g., McMullen, 2014). Results showed that,
after including learners’ age in months, ar-
ithmetical fluency, general math achievement,
and IQ in the model, SFOR still accounted
for 1% variance in learners’ rational number
knowledge scores (see Table 3). The total
amount of variance of learners’ rational num-
ber knowledge explained by the five predic-
tors was 55%. These results clearly showed
that after including both learners’ age and
their general math achievement, the role of
SFOR as predictor of learners’ rational num-
ber knowledge considerably decreased.
However, it is important to note that, after
controlling for learners’ age in months, arith-

metical fluency, general math achievement,
and IQ, SFOR still significantly predicted
RNKT (6= .12, p<.05). Further, if we exam-
ined the three different aspects separately,
we saw (see Table 3) that — after controlling
for learners’ age in months, arithmetical flu-
ency, general math achievement, and 1Q —
SFOR only significantly predicted the aspect
of operations (f=.14, p<.01), while this was
not the case for the aspects of density and
size (both p-values > .05).

Discussion

In the present study we elaborated on pre-
vious research by further exploring the rela-
tionship between learners’ SFOR and their
rational number knowledge. This study not
only investigated whether SFOR related to
rational number knowledge as a whole, but
also to the several aspects of the natural
number bias. We additionally extended pre-
vious research by 1) including test items of
operations with rational numbers in the Ra-
tional Number Knowledge Test, which was
an aspect of rational number knowledge that

Table 3 Predictors of rational number knowledge

Rational
number DENSITY SIZE OPERATIONS
Variable knowledge
Standardized R? Standardized R? Standardized R? Standardized R?
i Change i Change i Change i Change
M()nths '51*** '32*** '35*** '13*** '39*** '19*** '50*** '31***
Arithmetical 0k 1w 1% 05+ 19 10 16k (g**
fluency ) ) ) ) ) ) ) )
General math 3wk 10 2§k 06+ 5k (7% 23k (7%
achievement ' ' ’ ' ) ' ’ '
1Q .03 00 01 .00 .03 00 03 .00
SFOR 2% 01* 04 .00 .09 01 4% 02%*
Total R? S5k 4HEk R A8HH*

Note. *p < .03, ** p <.01, *** p < 001
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was missing in the instrument used by
McMullen and colleagues (2015) and 2) con-
trolling for learners’ general mathematics
achievement and age, which was not done
by McMullen and colleagues (2015).

First, based on the data of 356 upper el-
ementary school children, we found that
SFOR indeed correlated highly with learn-
ers’ rational number knowledge (as measured
by incongruent rational number tasks, which
are those rational number tasks in which
natural number knowledge may interfere in
obtaining the correct answer).

Second, several regression analyses re-
vealed that learners’ SFOR relates to their
rational number knowledge, as well as to each
of the three aspects of the natural number
bias, after controlling for arithmetical fluency
and non-verbal intelligence. While this rela-
tion was already shown by McMullen and
colleagues (e.g., McMullen, 2014; McMullen
etal., 2015) for rational number knowledge
as a whole, the present study successfully
replicated this finding, and moreover showed
that SFOR also relates to the three aspects
of the natural number bias separately. The
predictive value of SFOR was the smallest
on the density aspect (R? change = 3%; 3 =
.18) followed by the size aspect (R? change =
5%; B = .24) and the largest for the opera-
tions aspect (R? change = 9%; f=.31).

Third, although including both learners’
age and their general math achievement led
to a decrease of the unique contribution of
SFOR as a predictor of learners’ rational num-
ber knowledge, this relation remained sig-
nificant. Further, a separate analysis for the
three different aspects of the natural number
bias revealed that after controlling for learn-
ers’ age in months, arithmetical fluency, gen-
eral math achievement, and IQ, SFOR only
significantly predicted the understanding of

the aspect of operations, while this result
could not be found in the aspects of density
and size.

In what follows, we will further discuss
those results and their impact on future re-
search. First, we will discuss the relation be-
tween SFOR and learners’ rational number
knowledge. Second, we will elaborate on our
results concerning the relation between
SFOR and each of the three aspects of the
natural number bias.

First, our results concerning the relation
between SFOR and rational number knowl-
edge imply that learners who spontaneously
pay more attention to quantitative relations
in non-mathematical settings also have a
better understanding of rational numbers. In
this case, paying special attention to multi-
plicative quantitative relations is relevant, as
rational numbers are in fact a multiplicative
quantitative relation (a ratio) between two
whole numbers.

The relation between SFOR and rational
number knowledge may further be explained
by the idea that, due to more frequent self-
initiated practice, learners with a high SFOR
tendency have more everyday experiences
with (multiplicative) quantitative relations
(McMullen, 2014). These experiences may
call for reasoning about non-natural num-
bers and approximate quantitative relations.
McMullen and colleagues (2015) give the
example of a child who realizes that sharing
two cookies among three friends results in
a non-natural number answer and requires
approximate division into thirds. As a re-
sult, learners with a high SFOR tendency
may more frequently experience that the
natural number system has its limitations
and that other kinds of numbers are re-
quired to model some situations. These
learners might be less inclined to form the
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above-mentioned intuitive idea of a num-
ber as a natural number as it was described
in the introduction, or they might have more
experiences that question this intuition once
it is developed. This can be fruitful in un-
derstanding the rational number system,
especially in overcoming the natural num-
ber bias (McMullen et al., 2015).

The aforementioned explanation for our
finding that learners with high SFOR have a
better understanding of rational numbers
(and more specifically in those tasks in which
natural number reasoning leads to an incor-
rect answer) requires further research. This
research may explore whether the observed
correlation between SFOR and rational num-
ber knowledge is a causal one, by means of
(quasi-) experimental studies that investigate
if a training program that stimulates focus-
ing on quantitative relations would facilitate
the development of rational number knowl-
edge.

Our findings are not only important for
further research on the role of the natural
number bias in the development of rational
number knowledge; they also demonstrate
the relevance of the SFOR tendency itself.
They show that the spontaneous inclination
to focus on quantitative relations in non-
mathematical settings is an important source
ofindividual differences in a more advanced
mathematical domain, namely that of ratio-
nal numbers. However, in line with previ-
ous work on learners’ SFOR tendency
(McMullen, 2014; McMullen et al., 2013,
2014), the present study exclusively focused
on quantitative relations that are multipli-
cative in nature. The question remains to
what extent learners also spontaneously
would focus on other types of quantitative
relations, such as additive relations (see
Degrande, Verschaffel, & Van Dooren, 2015;

McMullen, 2014), and to what extent these
distinct foci on different types of quantita-
tive relations would be differentially related
to their rational number knowledge and other
mathematical concepts and skills.

Second, SFOR not only significantly pre-
dicted learners’ rational number knowledge
as a whole; it also significantly predicted all
three aspects of the natural number bias, af-
ter controlling for arithmetical fluency and
non-verbal intelligence. However, after ad-
ditionally taking into account learners’ age
and general math achievement, SFOR only
significantly predicted learners’ knowledge
of operations — and not the two other as-
pects of the natural number bias. These find-
ings might suggest that the three aspects of
the natural number bias are not to the same
extent impacted by learners’ age and math
achievement.

These results further reveal some informa-
tion about the instrument used to measure
learners’ SFOR. In particular, the finding that
SFOR only significantly predicted the un-
derstanding of the aspect of operations may
be explained by the SFOR-instrument. Learn-
ers were given a high SFOR score when they
correctly noticed that the objects were mul-
tiplied or divided in the teleportation machine,
and either expressed this specific operation
explicitly (in the open-ended trials) or repli-
cated that operation in another trial (in the
drawing trials). In order to obtain the maxi-
mum SFOR-score (see coding scheme
above), one thus had to think about the mul-
tiplicative relations underlying the transfor-
mations, and mathematically express those
relations by means of operations. Therefore,
it is not that surprising that SFOR only pre-
dicted the understanding of the aspect of
operations (after controlling for arithmetical
fluency, non-verbal intelligence, age, and
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general math achievement) and not the as-
pects of size and density. The latter two as-
pects rather measured the conceptual knowl-
edge of rational numbers, while operations
mainly measured the procedural knowledge
of rational numbers.

In sum, the present study further explored
therelation between learners’ SFOR and their
rational number knowledge, more specifically
the three aspects of the natural number bias
(i.e., density, size and operations). Our re-
sults do not only contribute to our under-
standing of the process of acquiring rational
number knowledge, they also demonstrate
the relevance of SFOR. Nevertheless, some
important theoretical issues remain to be
clarified in future research. Providing an an-
swer to those issues would not only help
get a better view on the impact of SFOR — in
its different conceptualizations and opera-
tionalizations — on the understanding of vari-
ous mathematical domains, but also to de-
velop targeted pedagogical interventions for
learners in different grades.

Received August 4, 2015
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